Answer
$\frac{ln(|tan(2x)+sec(2x)|)-ln(|cos(2x)|)}{2}+C$
Work Step by Step
$\int (tan(2x)+sec(2x))dx$
$=\int tan(2x)dx+\int sec(2x)dx$
let $2x=u$
$2dx=du$
$=\int tan(2x)dx+\int sec(2x)dx$
$=\frac{1}{2} \int tan(u)du + \frac{1}{2} \int sec(u)du$
$=(\frac{-ln(|cos(u)|)}{2})+(\frac{ln(|tan(u)+sec(u)|)}{2})+C$
$=\frac{ln(|tan(2x)+sec(2x)|)-ln(|cos(2x)|)}{2}+C$