Answer
$\ln|x-1|+\frac{1}{2(x-1)^2}+C$
Work Step by Step
let u=x-1, du=dx
$u=x-1$
$u+1=x$
$u-1=x-1-1=x-2$
$\int\frac{x(x-2)}{(x-1)^3}dx$
$=\int\frac{(u+1)(u-1)}{u^3}du$
$=\int\frac{u^2-1}{u^3}du$
$=\int(u^2-1)u^{-3}du$
$=\int(u^{-1}-u^{-3})du$
$=ln|u|+\frac{1}{2}u^{-2}+C$
$=ln|x-1|+\frac{1}{2(x-1)^2}+C$