Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 334: 13

Answer

$\frac{1}{3}$$\ln|x^{3}+3x^{2}+9x|$ + C

Work Step by Step

$\int\frac{x^{2}+2x+3}{x^{3}+3x^{2}+9x} dx $ Let $u =x^{3}+3x^{2}+9x$ $\frac{du}{dx}$ = $3x^{2}+6x+9$ $\frac{du}{3x^{2}+6x+9}$ = $dx$ Substitute $u$ and $dx$ into the original equation $\int\frac{x^{2}+2x+3}{u}\frac{du}{3x^{2}+6x+9}$ = $\int\frac{x^{2}+2x+3}{3x^{2}+6x+9}\frac{1}{u} du$ = $\int\frac{x^{2}+2x+3}{3(x^{2}+2x+3)}\frac{1}{u} du$ = $\int\frac{1}{3}\frac{1}{u} du$ = $\frac{1}{3}$$\int\frac{1}{u} du$ = $\frac{1}{3}$$\ln|u|$ + C Since $u =x^{3}+3x^{2}+9x$, substituting it back will give you $\frac{1}{3}$$\ln|x^{3}+3x^{2}+9x|$ + C
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.