Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 334: 30

Answer

$3\displaystyle \ln|x^{1/3}-1|+\frac{3x^{2/3}}{2}+3x^{1/3}+x+C_{1}$

Work Step by Step

sub: $\left[\begin{array}{ll} u=x^{1/3}-1 & \\ du=\frac{1}{3x^{2/3}}dx & dx=3(u+1)^{2}du \end{array}\right]$ $\displaystyle \int\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}dx=\int\frac{u+1}{u}3(u+1)^{2}du$ $=3\displaystyle \int\frac{u+1}{u}(u^{2}+2u+1)du$ $=3\displaystyle \int(u^{2}+3u+3+\frac{1}{u})du$ $=3[\displaystyle \frac{u^{3}}{3}+\frac{3u^{2}}{2}+3u+\ln|u|]+C$ $=3[\displaystyle \frac{(x^{1/3}-1)^{3}}{3}+\frac{3(x^{1/3}-1)^{2}}{2}+3(x^{1/3}-1)+ \ln|x^{1/3}-1|]+C\\$ $=x^{3/3}-3x^{2/3}+3x^{1/3}+\displaystyle \frac{9}{2}x^{2/3}-9x^{1/3}+\frac{9}{2}+9x^{1/3}-9 \\+3\ln|x^{1/3}-1|+C$ $=3\displaystyle \ln|x^{1/3}-1|+\frac{3x^{2/3}}{2}+3x^{1/3}+x+C_{1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.