Answer
$2θ+4ln|cos(\frac{θ}{4})|+C$
Work Step by Step
$\int(2- tan(\frac{θ}{4}) )dθ$
$=\int 2dθ$ $-\int tan(\frac{θ}{4}) dθ$
for $\int tan(\frac{θ}{4}) dθ$,
let $u=\frac{θ}{4}$
$du=\frac{1}{4} dθ$
$dθ=4du$
$\int tan(\frac{θ}{4}) dθ$
$=4\int tan(u)$ $du$
$=4(-ln|cos(u)|$
$=-4ln|cos(\frac{θ}{4})|$
$\int 2dθ$ $-\int tan(\frac{θ}{4}) dθ$
$=2θ-(-4ln|cos(\frac{θ}{4})|)+C$
$=2θ+4ln|cos(\frac{θ}{4})|+C$