Answer
$\frac{1}{3}sin(3θ)-θ+C$
Work Step by Step
$\int cos(3θ -1) dθ$
$=\int cos(3θ) dθ$ $-\int 1$ $dθ$
for $\int cos(3θ) dθ$,
let $u=3θ$
$du=3$ $dθ$
$dθ=\frac{1}{3}du$
$\int cos(3θ) dθ$
$=\int cos (u)$ $\frac{1}{3}du$
$=\frac{1}{3}\int cos(u)$ $du$
$=\frac{1}{3}(sin(u))$
$=\frac{1}{3}sin(3θ)$
$=\int cos(3θ) dθ$ $-\int 1$ $dθ$
$=\frac{1}{3}sin(3θ)-θ+C$