Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 334: 46

Answer

$$f\left( x \right) = 4\ln \left| {x - 1} \right| - {x^2} + 7$$

Work Step by Step

$$\eqalign{ & f''\left( x \right) = - \frac{4}{{{{\left( {x - 1} \right)}^2}}} - 2 \cr & {\text{Integrate}} \cr & f'\left( x \right) = \int {\left[ { - \frac{4}{{{{\left( {x - 1} \right)}^2}}} - 2} \right]dx} \cr & f'\left( x \right) = \frac{4}{{x - 1}} - 2x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Using the initial condition }}f'\left( 2 \right) = 0 \cr & 0 = \frac{4}{{2 - 1}} - 2\left( 2 \right) + C \cr & 0 = 4 - 4 + C \cr & C = 0 \cr & {\text{Substituting }}C{\text{ into }}\left( {\bf{1}} \right) \cr & f'\left( x \right) = \frac{4}{{x - 1}} - 2x \cr & {\text{Integrate}} \cr & f\left( x \right) = \int {\left( {\frac{4}{{x - 1}} - 2x} \right)} dx \cr & f\left( x \right) = 4\ln \left| {x - 1} \right| - {x^2} + C{\text{ }}\left( {\bf{2}} \right) \cr & {\text{Using the initial condition }}f\left( 2 \right) = 3 \cr & 3 = 4\ln \left| {2 - 1} \right| - {\left( 2 \right)^2} + C \cr & 3 = - 4 + C \cr & C = 7 \cr & {\text{Substituting }}C{\text{ into }}\left( {\bf{2}} \right) \cr & f\left( x \right) = 4\ln \left| {x - 1} \right| - {x^2} + 7 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.