Answer
$2(ln(|x-1|)-\frac{1}{x-1})+C$
Work Step by Step
let u = $x-1$
du=dx
$\int\frac{2x}{(x-1)^2}dx=2\int\frac{x}{(x-1)^2}dx$
for $\int\frac{x}{(x-1)^2}dx$, write $x$ as $x-1+1$
$=2\int(\frac{1}{x-1}+\frac{1}{(x-1)^2})dx$
$=2(\int\frac{1}{x-1}dx+\int\frac{!}{(x-1)^2}dx)$
$=2(ln(|x-1|)-\frac{1}{x-1})+C$