Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 45

Answer

$f(x) = \frac{1}{12}(4x^{2} - 10)^{3} -8$

Work Step by Step

1. Integrate $f'(x)$ by substitution $\int 2x(4x^{2} - 10)^{2}dx$ Let $u = 4x^{2} - 10$ $u' = 8x$ $\frac{du}{dx} = 8x$ $\frac{du}{4} = 8x$ $\frac{1}{4}\int (du)(u^{2}) dx$ $= \frac{1}{4} \times \frac{u^{3}}{3} + c$ $= \frac{1}{12}(u^{3}) + c$ $= \frac{1}{12}(4x^{2} - 10)^{3} + c$ $f(x) = \frac{1}{12}(4x^{2} - 10)^{3} + c$ 2. Substitute the point $(2, 10)$ into $f(x)$ to find for $c$ $10 = \frac{1}{12}(4(2)^{2} - 10)^{3} + c$ $10 = \frac{1}{12}(4(4) - 10)^{3} + c$ $10 = \frac{1}{12}(16 - 10)^{3} + c$ $10 = \frac{1}{12}(6)^{3} + c$ $10 = \frac{1}{12}(216) + c$ $10 = \frac{216}{12} + c$ $10 = 18 + c$ $c = 10- 18$ $c = -8$ 3. Rewrite the equation of $f(x)$ $f(x) = \frac{1}{12}(4x^{2} - 10)^{3} -8$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.