Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 40

Answer

$\frac{2}{3}\tan^{\frac{3}{2}}{x}+C$

Work Step by Step

$\int\sqrt{\tan{x}}\sec^2{x}dx$ Let $u=\tan{x}\hspace{8mm}du=\sec^2{x}dx\hspace{8mm}dx=\frac{du}{\sec^2{x}}$ Then $\int\sqrt{\tan{x}}\sec^2{x}dx=\int\sqrt{u}\sec^2{x}\frac{du}{\sec^2{x}}=\int\sqrt{u}du=\frac{2}{3}u^{\frac{3}{2}}+C=\frac{2}{3}\tan^{\frac{3}{2}}{x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.