Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 44

Answer

$ f_{(x)} = \dfrac{\tan{(2x)}}{2} + 2$

Work Step by Step

$f_{(x)}' = \sec^2{(2x)} \longrightarrow f_{(x)} = \int \sec^2{(2x)}\ dx $ Let $u = 2x \longrightarrow du = 2\ dx \longrightarrow dx = \dfrac{du}{2}$ $\int \sec^2{(2x)}\ dx = \int \sec^2{(u)}\ \dfrac{du}{2} = \dfrac{1}{2}\int \sec^2{(u)}\ du = \dfrac{1}{2} \times \tan{(u)} + C$ $\dfrac{\tan{(u)}}{2} + C = \dfrac{\tan{(2x)}}{2} + C \longrightarrow f_{(x)} = \dfrac{\tan{(2x)}}{2} + C$ Since the graph passes through the point $(\frac{\pi}{2}, 2)$, then $f_{(\frac{\pi}{2})} = \dfrac{\tan{(2\times\frac{\pi}{2})}}{2} + C = 2 \longrightarrow \dfrac{\tan{\pi}}{2} + C = 2 \longrightarrow \dfrac{0}{2} + C = 2 \longrightarrow C = 2$ Hence $ f_{(x)} = \dfrac{\tan{(2x)}}{2} + 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.