Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 32

Answer

$$y = \frac{{{{\left( {{x^3} - 1} \right)}^3}}}{9} + 1$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = {x^2}{\left( {{x^3} - 1} \right)^2} \cr & {\text{Separate the variables}} \cr & dy = {x^2}{\left( {{x^3} - 1} \right)^2}dx \cr & {\text{Integrate both sides with respect to }}x \cr & \int {dy} = \int {{x^2}{{\left( {{x^3} - 1} \right)}^2}} dx \cr & \int {dy} = \frac{1}{3}\int {{{\left( {{x^3} - 1} \right)}^2}\left( {3{x^2}} \right)} dx \cr & {\text{Let }}u = 4 - {x^2},{\text{ }}du = - 2xdx \cr & \int {dy} = \frac{1}{3}\int {\overbrace {{{\left( {{x^3} - 1} \right)}^2}}^{{u^2}}\overbrace {\left( {3{x^2}} \right)dx}^{du}} \cr & y = \frac{1}{3}\left[ {\frac{{{{\left( {{x^3} - 1} \right)}^3}}}{3}} \right] + C \cr & y = \frac{{{{\left( {{x^3} - 1} \right)}^3}}}{9} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {1,0} \right) \cr & 0 = \frac{{{{\left( {{1^3} - 1} \right)}^3}}}{9} + C \cr & 1 = 0 + C \cr & C = 1 \cr & {\text{Substitute 2 for }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{{{{\left( {{x^3} - 1} \right)}^3}}}{9} + 1{\text{ }}\left( {{\text{Particular solution}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.