Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 27

Answer

$2x^2-4\sqrt{16-x^2}+C$

Work Step by Step

$\frac{dy}{dx}=4x+\frac{4x}{\sqrt{16-x^2}}$ $\int\frac{dy}{dx}dx=\int\left(4x+\frac{4x}{\sqrt{16-x^2}}\right)dx=\int 4xdx+\int\frac{4x}{\sqrt{16-x^2}}dx$ $=2x^2+\int\frac{4x}{\sqrt{16-x^2}}dx$ Let $u=16-x^2\hspace{8mm}du=-2xdx\hspace{8mm}\frac{du}{-2x}=dx$ Therefore $\int\frac{dy}{dx}dx=2x^2+\int\frac{4x}{\sqrt{16-x^2}}dx=2x^2+\int\frac{4x}{\sqrt{u}}\frac{du}{-2x}=2x^2-2\int\frac{1}{\sqrt{u}}du$ $2x^2-2\int u^{-\frac{1}{2}}du=2x^2-2(2u^{\frac{1}{2}})+C=2x^2-4\sqrt{16-x^2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.