Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 41

Answer

$\frac{1}{2}tan^{2}x+C$

Work Step by Step

Given: $\int \frac{csc^{2}x}{cot^{3}x}dx$ Rewrite: $\int (\frac{1}{sin^{2}x})\div (\frac{cos^{3}x}{sin^{3}x})dx$ $\int (\frac{1}{sin^{2}x})(\frac{sin^{3}x}{cos^{3}x})dx$ $\int \frac{sinx}{cos^{3}x}dx$ $\int tanxsec^{2}xdx$ Let $u=tanx$ $u=tanx$ $\frac{du}{dx}=sec^{2}x$ $dx=\frac{1}{sec^{2}x}du$ $=\int udu$ $=\frac{1}{2}u^{2}+C$ $=\frac{1}{2}tan^{2}x+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.