Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 28

Answer

$\frac{20}{3}\sqrt{1+x^3}+C$

Work Step by Step

$\frac{dy}{dx}=\frac{10x^2}{\sqrt{1+x^3}}$ $\int\frac{10x^2}{\sqrt{1+x^3}}dx$ $u=1+x^3\hspace{8mm}du=3x^2dx\hspace{8mm}\frac{du}{3x^2}=dx$ Therefore $\int\frac{10x^2}{\sqrt{1+x^3}}dx=\int\frac{10x^2}{\sqrt{u}}\frac{1}{3x^2}du=\frac{10}{3}\int\frac{1}{\sqrt{u}}du=\frac{10}{3}\int u^{-\frac{1}{2}}du$ $=\frac{10}{3}(2u^{\frac{1}{2}})+C=\frac{20}{3}\sqrt{1+x^3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.