Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 30

Answer

$\sqrt{x^2-8x+1}+C$

Work Step by Step

$\frac{dy}{dx}=\frac{x-4}{\sqrt{x^2-8x+1}}$ $\int\frac{dy}{dx}dx=\int\frac{x-4}{\sqrt{x^2-8x+1}}dx$ Let $u=x^2-8x+1\hspace{8mm}du=(2x-8)dx=2(x-4)dx$ $dx=\frac{du}{2(x-4)}$ $\int\frac{x-4}{\sqrt{x^2-8x+1}}dx=\int\frac{x-4}{\sqrt{u}}\frac{du}{2(x-4)}=\frac{1}{2}\int\frac{1}{\sqrt{u}}du=\frac{1}{2}\int u^{-\frac{1}{2}}du$ $=\frac{1}{2}(2(u^\frac{1}{2})+C=\sqrt{x^2-8x+1}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.