Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 301: 29

Answer

$-\frac{1}{2(x^2+2x-3)}+C$

Work Step by Step

$\frac{dy}{dx}=\frac{x+1}{(x^2+2x-3)^2}$ $\int\frac{dy}{dx}dx=\int\frac{x+1}{(x^2+2x-3)^2}dx$ Let $u=x^2+2x-3\hspace{8mm}du=(2x+2)dx=2(x+1)dx$ $dx=\frac{du}{2(x+1)}$ $\int\frac{x+1}{(x^2+2x-3)^2}dx=\int\frac{x+1}{(u)^2}\frac{du}{2(x+1)}=\frac{1}{2}\int\frac{1}{u^2}du$ $=\frac{1}{2}\int u^{-2}du=\frac{1}{2}(-u^{-1})+C=-\frac{1}{2u}+C$ $=-\frac{1}{2(x^2+2x-3)}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.