Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 9

Answer

$$\frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C$$

Work Step by Step

$$\eqalign{ & \int {x\ln x} dx \cr & {\text{substitute }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & dv = xdx,{\text{ }}v = \frac{{{x^2}}}{2} \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {x\ln x} dx = \ln x\left( {\frac{{{x^2}}}{2}} \right) - \int {\left( {\frac{{{x^2}}}{2}} \right)\left( {\frac{1}{x}} \right)dx} \cr & \int {x\ln x} dx = \frac{{{x^2}}}{2}\ln x - \int {\frac{x}{2}dx} \cr & \int {x\ln x} dx = \frac{{{x^2}}}{2}\ln x - \frac{1}{2}\int {xdx} \cr & {\text{find antiderivative}} \cr & \int {x\ln x} dx = \frac{{{x^2}}}{2}\ln x - \frac{1}{2}\left( {\frac{{{x^2}}}{2}} \right) + C \cr & \int {x\ln x} dx = \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.