Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 10

Answer

$$\frac{2}{3}{x^{3/2}}\ln x - \frac{4}{9}{x^{3/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\sqrt x \ln x} dx \cr & {\text{radical property }}\sqrt x = {x^{1/2}} \cr & \int {{x^{1/2}}\ln x} dx \cr & {\text{substitute }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & dv = {x^{1/2}}dx,{\text{ }}v = \frac{{{x^{3/2}}}}{{3/2}} = \frac{2}{3}{x^{3/2}} \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {{x^{1/2}}\ln x} dx = \ln x\left( {\frac{2}{3}{x^{3/2}}} \right) - \int {\left( {\frac{2}{3}{x^{3/2}}} \right)\left( {\frac{1}{x}} \right)dx} \cr & \int {{x^{1/2}}\ln x} dx = \frac{2}{3}{x^{3/2}}\ln x - \frac{2}{3}\int {{x^{1/2}}dx} \cr & {\text{find antiderivative}} \cr & \int {{x^{1/2}}\ln x} dx = \frac{2}{3}{x^{3/2}}\ln x - \frac{2}{3}\left( {\frac{2}{3}{x^{3/2}}} \right) + C \cr & \int {{x^{1/2}}\ln x} dx = \frac{2}{3}{x^{3/2}}\ln x - \frac{4}{9}{x^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.