Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 14

Answer

$$x\ln \left( {{x^2} + 4} \right) - 2x + 4{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\ln \left( {{x^2} + 4} \right)} dx \cr & {\text{substitute }}u = \ln \left( {{x^2} + 4} \right),{\text{ }}du = \frac{{2x}}{{{x^2} + 4}}dx \cr & dv = dx,{\text{ }}v = x \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - \int {x\left( {\frac{{2x}}{{{x^2} + 4}}} \right)dx} \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - \int {\frac{{2{x^2}}}{{{x^2} + 4}}dx} \cr & {\text{long division}} \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - \int {\left( {2 - \frac{8}{{{x^2} + 4}}} \right)dx} \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - \int {2dx} + \int {\frac{8}{{{x^2} + 4}}} \cr & {\text{find antiderivatives}} \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - 2x + \frac{8}{2}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C \cr & \int {\ln \left( {{x^2} + 4} \right)} dx = x\ln \left( {{x^2} + 4} \right) - 2x + 4{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.