Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 13

Answer

$$x\ln \left( {3x - 2} \right) - x - \frac{2}{3}\ln \left| {3x - 2} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\ln \left( {3x - 2} \right)} dx \cr & {\text{substitute }}u = \ln \left( {3x - 2} \right),{\text{ }}du = \frac{3}{{3x - 2}}dx \cr & dv = dx,{\text{ }}v = x \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - \int {\frac{{3x}}{{3x - 2}}dx} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - \int {\frac{{3x - 2 + 2}}{{3x - 2}}dx} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - \int {\left( {\frac{{3x - 2}}{{3x - 2}} + \frac{2}{{3x - 2}}} \right)dx} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - \int {\left( {1 + \frac{2}{{3x - 2}}} \right)dx} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - \int {dx} - \int {\frac{2}{{3x - 2}}dx} \cr & {\text{find antiderivative}} \cr & \int {\ln \left( {3x - 2} \right)} dx = x\ln \left( {3x - 2} \right) - x - \frac{2}{3}\ln \left| {3x - 2} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.