Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 33

Answer

$\frac{5\pi}{6}$+1-$\sqrt3$

Work Step by Step

Let's use a right triangle shown by the image below. Based on the trigonometric relationship, $sec^{-1}\sqrt{\theta}$ =$\beta$. Hence, sec$\beta$=$\sqrt\theta$ and $sec^{2}\beta$=$\theta$. And $\frac{d\theta}{d\beta}$=2$sec^{2}$$\beta$tan$\beta$ So, $\int$$sec^{-1}\sqrt{\theta}$d$\theta$= $\int$$\beta$($\frac{d\theta}{d\beta})$d$\beta$=2$\int$$\beta$$sec^{2}$$\beta$tan$\beta$d$\beta$ (We apply chain rule here) To evaluate $\int$$\beta$$sec^{2}\beta$tan$\beta$d$\beta$, let u=$\beta$ and dv= $sec^{2}\beta$tan$\beta$d$\beta$. So, v=$\int$$sec^{2}\beta$tan$\beta$d$\beta$. To evaluate v, we let p=tan$\beta$, so $sec^{2}\beta$$d\beta$=dp. v=$\int$p dp=$\frac{1}{2}$$p^{2}$=$\frac{1}{2}$$tan^{2}\beta$. Now, using partial integration, $\int$$sec^{-1}\sqrt{\theta}$d$\theta$= 2($\int$$\beta$$sec^{2}\beta$tan$\beta$d$\beta$)=2($\frac{1}{2}$$\beta$$tan^{2}\beta$-$\frac{1}{2}$$\int$$tan^{2}\beta$d$\beta$) Here we use the identity $tan^{2}\beta$=$sec^{2}\beta$-1 to evaluate $\int$$tan^{2}\beta$d$\beta$ Therefore, the expression = $\beta$$tan^{2}\beta$-$\int$($sec^{2}\beta$-1)d$\beta$ Then we split the integral, =$\beta$$tan^{2}\beta$-$\int$$sec^{2}\beta$d$\beta$+$\int$d$\beta$ $\int$$sec^{2}\beta$d$\beta$=tan$\beta$, $\beta$$tan^{2}\beta$-tan$\beta$+$\beta$ Finally we convert $\beta$ back to $\theta$, expression=($sec^{-1}\sqrt{\theta}$)($\theta$-1)-$\sqrt{\theta-1}$+$sec^{-1}\sqrt{\theta}$ This gives: $\frac{5\pi}{6}$+1-$\sqrt3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.