Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 19

Answer

$$\frac{1}{2}{e^x}sinx - \frac{1}{2}{e^x}\cos x + C$$

Work Step by Step

$$\eqalign{ & \int {{e^x}\sin x} dx \cr & {\text{substitute }}u = sinx,{\text{ }}du = \cos xdx \cr & dv = {e^x}dx,{\text{ }}v = {e^x} \cr & {\text{use integration by parts}} \cr & \int {{e^x}\sin x} dx = {e^x}sinx - \int {\left( {{e^x}} \right)\left( {\cos xdx} \right)} \cr & \int {{e^x}\sin x} dx = {e^x}sinx - \int {{e^x}\cos xdx} \cr & {\text{substitute }}u = \cos x,{\text{ }}du = - \sin xdx \cr & dv = {e^x}dx,{\text{ }}v = {e^x} \cr & {\text{use integration by parts}} \cr & \int {{e^x}\sin x} dx = {e^x}sinx - \left( {{e^x}\cos x - \int {\left( {{e^x}} \right)\left( { - \sin xdx} \right)} } \right) \cr & \int {{e^x}\sin x} dx = {e^x}sinx - \left( {{e^x}\cos x + \int {{e^x}\sin xdx} } \right) \cr & \int {{e^x}\sin x} dx = {e^x}sinx - {e^x}\cos x - \int {{e^x}\sin xdx} \cr & {\text{solving for }}\int {{e^x}\sin xdx} \cr & \int {{e^x}\sin x} dx + \int {{e^x}\sin xdx} = {e^x}sinx - {e^x}\cos x \cr & 2\int {{e^x}\sin x} dx = {e^x}sinx - {e^x}\cos x + C \cr & \int {{e^x}\sin x} dx = \frac{1}{2}{e^x}sinx - \frac{1}{2}{e^x}\cos x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.