Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 2

Answer

$$\frac{1}{3}x{e^{3x}} - \frac{1}{9}{e^{3x}} + C$$

Work Step by Step

$$\eqalign{ & \int {x{e^{3x}}} dx \cr & {\text{substitute }}u = x,{\text{ }}du = dx \cr & dv = {e^{3x}}dx,{\text{ }}v = \frac{1}{3}{e^{3x}} \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {x{e^{3x}}} dx = \frac{1}{3}x{e^{3x}} - \int {\left( {\frac{1}{3}{e^{3x}}} \right)dx} \cr & \int {x{e^{3x}}} dx = \frac{1}{3}x{e^{3x}} - \frac{1}{3}\int {{e^{3x}}dx} \cr & {\text{find antiderivative}} \cr & \int {x{e^{3x}}} dx = \frac{1}{3}x{e^{3x}} - \frac{1}{3}\left( {\frac{1}{3}{e^{3x}}} \right) + C \cr & \int {x{e^{3x}}} dx = \frac{1}{3}x{e^{3x}} - \frac{1}{9}{e^{3x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.