Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 8

Answer

$$ - {x^2}\cos x + 2x\sin x + 2\cos x + C$$

Work Step by Step

$$\eqalign{ & \int {{x^2}\sin x} dx \cr & {\text{substitute }}u = {x^2},{\text{ }}du = 2xdx \cr & dv = \sin xdx,{\text{ }}v = - \cos x \cr & {\text{ integration by parts}}{\text{, we have}} \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x - \int {\left( { - \cos xdx} \right)\left( {2xdx} \right)} \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x + 2\int {x\cos xdx} \cr & {\text{substitute }}u = x,{\text{ }}du = dx \cr & dv = \cos xdx,{\text{ }}v = \sin x \cr & {\text{applying integration by parts}}{\text{, we have}} \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x + 2\left( {x\sin x - \int {\sin xdx} } \right) \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x + 2x\sin x - 2\int {\sin xdx} \cr & {\text{integrating}} \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x + 2x\sin x - 2\left( { - \cos x} \right) + C \cr & \int {{x^2}\sin x} dx = - {x^2}\cos x + 2x\sin x + 2\cos x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.