Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 5

Answer

$$ - \frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + C$$

Work Step by Step

$$\eqalign{ & \int {x\sin 3x} dx \cr & {\text{substitute }}u = x,{\text{ }}du = dx \cr & dv = \sin 3xdx,{\text{ }}v = - \frac{1}{3}\cos 3x \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {x\sin 3x} dx = - \frac{1}{3}x\cos 3x - \int {\left( { - \frac{1}{3}\cos 3x} \right)dx} \cr & \int {x\sin 3x} dx = - \frac{1}{3}x\cos 3x + \frac{1}{3}\int {\cos 3xdx} \cr & {\text{find antiderivative}} \cr & \int {x\sin 3x} dx = - \frac{1}{3}x\cos 3x + \frac{1}{3}\left( {\frac{1}{3}\sin 3x} \right) + C \cr & \int {x\sin 3x} dx = - \frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.