Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 35

Answer

$$ - \frac{\pi }{2}$$

Work Step by Step

$$\eqalign{ & \int_0^\pi {x\sin 2x} dx \cr & {\text{substitute }}u = x,{\text{ }}du = dx \cr & dv = \sin 2xdx,{\text{ }}v = - \frac{1}{2}\cos 2x \cr & {\text{applying integration by parts}}{\text{, we have}} \cr & \int_0^\pi {x\sin 2x} dx = \left. {\left( { - \frac{x}{2}\cos 2x} \right)} \right|_0^\pi - \int_0^\pi {\left( { - \frac{1}{2}\cos 2x} \right)dx} \cr & {\text{integrating}} \cr & \int_0^\pi {x\sin 2x} dx = \left. {\left( { - \frac{x}{2}\cos 2x} \right)} \right|_0^\pi + \left. {\left( {\frac{1}{4}\sin 2x} \right)} \right|_0^\pi \cr & \int_0^\pi {x\sin 2x} dx = \left. {\left( {\frac{x}{2}\cos 2x + \frac{1}{4}\sin 2x} \right)} \right|_0^\pi \cr & {\text{evaluate limits}} \cr & = \left( { - \frac{\pi }{2}\cos 2\pi + \frac{1}{4}\sin 2\pi } \right) - \left( { - \frac{0}{2}\cos 0 + \frac{1}{4}\sin 0} \right) \cr & {\text{simplify}} \cr & = - \frac{\pi }{2}\left( 1 \right) + \frac{1}{4}\left( 0 \right) \cr & = - \frac{\pi }{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.