Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 34

Answer

\[\frac{2}{3}\pi - \frac{1}{2}\sqrt 3 \]

Work Step by Step

\[\begin{gathered} \int_1^2 {x{{\sec }^{ - 1}}x} dx \hfill \\ {\text{Let }}u = {\sec ^{ - 1}}x{\text{ and }}dv = xdx \hfill \\ du = \frac{1}{{x\sqrt {{x^2} - 1} }}dx{\text{ }}v = \frac{{{x^2}}}{2} \hfill \\ {\text{Use integration by parts formula}} \hfill \\ \int {udv} = uv - \int {vdu} \hfill \\ \int {x{{\sec }^{ - 1}}xdx} = \frac{{{x^2}}}{2}{\sec ^{ - 1}}x - \int {\frac{1}{{x\sqrt {{x^2} - 1} }}\left( {\frac{{{x^2}}}{2}} \right)} dx \hfill \\ \int {x{{\sec }^{ - 1}}xdx} = \frac{{{x^2}}}{2}{\sec ^{ - 1}}x - \frac{1}{2}\int {\frac{x}{{\sqrt {{x^2} - 1} }}} dx \hfill \\ {\text{ }} = \frac{{{x^2}}}{2}{\sec ^{ - 1}}x - \frac{1}{4}\int {\frac{{2x}}{{\sqrt {{x^2} - 1} }}} dx \hfill \\ {\text{ }} = \frac{{{x^2}}}{2}{\sec ^{ - 1}}x - \frac{1}{4}\left( {2\sqrt {{x^2} - 1} } \right) + C \hfill \\ {\text{ }} = \frac{{{x^2}}}{2}{\sec ^{ - 1}}x - \frac{1}{2}\sqrt {{x^2} - 1} + C \hfill \\ {\text{Therefore,}} \hfill \\ \int_1^2 {x{{\sec }^{ - 1}}x} dx = \left[ {\frac{{{x^2}}}{2}{{\sec }^{ - 1}}x - \frac{1}{2}\sqrt {{x^2} - 1} } \right]_1^2 \hfill \\ = \left[ {\frac{{{2^2}}}{2}{{\sec }^{ - 1}}2 - \frac{1}{2}\sqrt {{2^2} - 1} } \right] - \left[ {\frac{{{1^2}}}{2}{{\sec }^{ - 1}}1 - \frac{1}{2}\sqrt {{1^2} - 1} } \right] \hfill \\ {\text{Simplify}} \hfill \\ = \left[ {2\left( {\frac{\pi }{3}} \right) - \frac{1}{2}\sqrt 3 } \right] - \left[ {\frac{{{1^2}}}{2}\left( 0 \right) - \frac{1}{2}\sqrt 0 } \right] \hfill \\ = \frac{2}{3}\pi - \frac{1}{2}\sqrt 3 \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.