Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 11

Answer

$$x{\left( {\ln x} \right)^2}{\text{ }} - 2x\ln x + 2x + C$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {\ln x} \right)}^2}dx} \cr & {\text{substitute }}u = {\left( {\ln x} \right)^2}{\text{ }} \cr & {\text{chain rule}} \cr & du = 2\left( {\ln x} \right)\left( {\frac{1}{x}} \right)dx \cr & du = \frac{{2\ln x}}{x} \cr & dv = dx,{\text{ }}v = x \cr & {\text{applying integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & \int {{{\left( {\ln x} \right)}^2}dx} = x{\left( {\ln x} \right)^2}{\text{ }} - \int {\left( x \right)\left( {\frac{{2\ln x}}{x}} \right)dx} \cr & \int {{{\left( {\ln x} \right)}^2}dx} = x{\left( {\ln x} \right)^2}{\text{ }} - 2\int {\ln xdx} \cr & \cr & {\text{substitute }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & dv = dx,{\text{ }}v = x \cr & {\text{ integration by parts}} \cr & \cr & \int {{{\left( {\ln x} \right)}^2}dx} = x{\left( {\ln x} \right)^2}{\text{ }} - 2\left( {x\ln x - \int {x\left( {\frac{1}{x}} \right)dx} } \right) \cr & \int {{{\left( {\ln x} \right)}^2}dx} = x{\left( {\ln x} \right)^2}{\text{ }} - 2x\ln x + 2\int {dx} \cr & {\text{find antiderivative}} \cr & \int {{{\left( {\ln x} \right)}^2}dx} = x{\left( {\ln x} \right)^2}{\text{ }} - 2x\ln x + 2x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.