Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 25

Answer

$$\frac{1}{2}{x^2}{e^{{x^2}}} - \frac{1}{2}{e^{{x^2}}} + C$$

Work Step by Step

$$\eqalign{ & \int {{x^3}{e^{{x^2}}}} dx \cr & {\text{substitute }}u = {x^2},{\text{ }}du = 2xdx \cr & dv = x{e^{{x^2}}}dx,{\text{ }} \cr & v = \int {x{e^{{x^2}}}dx} \cr & v = \frac{1}{2}{e^{{x^2}}} \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{, we have}} \cr & = \frac{1}{2}{x^2}{e^{{x^2}}} - \int {\left( {\frac{1}{2}{e^{{x^2}}}} \right)\left( {2x} \right)dx} \cr & = \frac{1}{2}{x^2}{e^{{x^2}}} - \int {x{e^{{x^2}}}dx} \cr & {\text{find antiderivative}} \cr & = \frac{1}{2}{x^2}{e^{{x^2}}} - \frac{1}{2}{e^{{x^2}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.