Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 26

Answer

$\int\frac{xe^{x}}{(x+1)^2}dx = \frac{-xe^{x}}{x+1} + e^{x} +c = \frac{e^{x}}{x+1} +c $

Work Step by Step

Integrate by parts using $\int udv = uv - \int vdu$ $u = xe^{x}$ $du = xe^{x}+e^{x}dx$ $dv = \frac{1}{(x+1)^2}dx$ $v = -\frac{1}{x+1}$ Now substitute into the formula: $\int\frac{xe^{x}}{(x+1)^2}dx = \frac{-xe^{x}}{x+1} - \int-\frac{xe^{x}+e^{x}}{x+1}dx$ Simplify: $\int\frac{xe^{x}}{(x+1)^2}dx = \frac{-xe^{x}}{x+1} + \int\frac{(x+1)e^{x}}{x+1}dx$ $\int\frac{xe^{x}}{(x+1)^2}dx = \frac{-xe^{x}}{x+1} + \int e^{x} dx$ Integrate: $\int\frac{xe^{x}}{(x+1)^2}dx = \frac{-xe^{x}}{x+1} + e^{x} +c$ Simplify by joining the two terms into a fraction (optional): $\int\frac{xe^{x}}{(x+1)^2}dx = \frac{e^{x}}{x+1} +c$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.