Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 498: 12

Answer

$$2\sqrt x \ln x - 4\sqrt x + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\ln x}}{{\sqrt x }}dx} \cr & {\text{radical property }}\sqrt x = {x^{1/2}} \cr & \int {\frac{{\ln x}}{{{x^{1/2}}}}dx} \cr & \int {{x^{ - 1/2}}\ln xdx} \cr & {\text{substitute }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & dv = {x^{ - 1/2}}dx,{\text{ }}v = \frac{{{x^{1/2}}}}{{1/2}} = 2{x^{1/2}} \cr & {\text{ integration by parts}} \cr & \int {udv} = uv - \int {vdu} \cr & {\text{we have}} \cr & \int {\frac{{\ln x}}{{\sqrt x }}dx} = 2{x^{1/2}}\left( {\ln x} \right) - \int {\left( {2{x^{1/2}}} \right)\left( {\frac{1}{x}} \right)dx} \cr & \int {\frac{{\ln x}}{{\sqrt x }}dx} = 2\sqrt x \ln x - 2\int {{x^{ - 1/2}}} dx \cr & {\text{find antiderivative}} \cr & \int {\frac{{\ln x}}{{\sqrt x }}dx} = 2\sqrt x \ln x - 2\left( {2{x^{1/2}}} \right) + C \cr & \int {\frac{{\ln x}}{{\sqrt x }}dx} = 2\sqrt x \ln x - 4\sqrt x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.