Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 54

Answer

$$y = {\tan ^{ - 1}}x{\text{ is a solution}}$$

Work Step by Step

$$\eqalign{ & y = {\tan ^{ - 1}}x \cr & {\text{Calculate the first and second derivative}} \cr & y' = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}x} \right] \cr & y' = \frac{1}{{1 + {x^2}}} \cr & y'' = - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & {\text{Substituting into }}y'' = - 2\sin y{\cos ^3}y \cr & - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = - 2\sin \left( {{{\tan }^{ - 1}}x} \right){\left[ {\cos \left( {{{\tan }^{ - 1}}x} \right)} \right]^3} \cr & - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = - 2\left( {\frac{x}{{\sqrt {{x^2} + 1} }}} \right){\left[ {\frac{1}{{\sqrt {{x^2} + 1} }}} \right]^3} \cr & - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = - 2\left( {\frac{x}{{{{\left( {\sqrt {{x^2} + 1} } \right)}^4}}}} \right) \cr & - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = - 2\left( {\frac{x}{{{{\left( {1 + {x^2}} \right)}^2}}}} \right) \cr & - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & {\text{The statement has been proved}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.