Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 51

Answer

$${\text{ }}y = {e^{ax}}\sin bx{\text{ is a solution}}$$

Work Step by Step

$$\eqalign{ & y'' - 2ay' + \left( {{a^2} + {b^2}} \right)y = 0 \cr & {\text{Let }}y = {e^{ax}}\sin bx \cr & {\text{Calculate }}y'{\text{ and }}y'' \cr & y' = \frac{d}{{dx}}\left[ {{e^{ax}}\sin bx} \right] \cr & y' = a{e^{ax}}\sin bx + b{e^{ax}}\cos bx \cr & y' = {e^{ax}}\left( {a\sin bx + b\cos bx} \right) \cr & y'' = \frac{d}{{dx}}\left[ {{e^{ax}}\left( {a\sin bx + b\cos bx} \right)} \right] \cr & y'' = a{e^{ax}}\left( {a\sin bx + b\cos bx} \right) + {e^{ax}}\left( {ab\cos bx - {b^2}\sin bx} \right) \cr & y'' = \left( {{a^2}\sin bx + 2ab\cos bx - {b^2}\sin bx} \right){e^{ax}} \cr & y'' = 2ab{e^{ax}}\cos bx + \left( {{a^2} - {b^2}} \right){e^{ax}}\sin bx \cr & {\text{Substitute }}y''{\text{ and }}y'{\text{ into }}y'' - 2ay' + \left( {{a^2} + {b^2}} \right)y = 0 \cr & y'' = 2ab{e^{ax}}\cos bx + \left( {{a^2} - {b^2}} \right){e^{ax}}\sin bx \cr & - 2ay' = - 2{a^2}{e^{ax}}\sin bx - 2ab{e^{ax}}\cos bx \cr & \left( {{a^2} + {b^2}} \right)y = {e^{ax}}\sin bx\left( {{a^2} + {b^2}} \right) \cr & {\text{Replacing and reducing}} \cr & 2ab{e^{ax}}\cos bx + \left( {{a^2} - {b^2}} \right){e^{ax}}\sin bx - 2{a^2}{e^{ax}}\sin bx \cr & - 2ab{e^{ax}}\cos bx + {e^{ax}}\sin bx\left( {{a^2} + {b^2}} \right) \cr & {\text{Simplifying}} \cr & 0 = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.