Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 35

Answer

$$\frac{{dy}}{{dx}} = {e^x}{x^{{e^x} - 1}} + {e^x}{x^{{e^x}}}\ln x$$

Work Step by Step

$$\eqalign{ & y = {x^{\left( {{e^x}} \right)}} \cr & {\text{Take natural logarithm on both sides}} \cr & \ln y = \ln {x^{\left( {{e^x}} \right)}} \cr & {\text{Using the logarithmic property }}\ln {u^n} = n\ln u \cr & \ln y = {e^x}\ln x \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {{e^x}\ln x} \right] \cr & {\text{By the product rule}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = {e^x}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{e^x}} \right] \cr & \frac{1}{y}\frac{{dy}}{{dx}} = {e^x}\left( {\frac{1}{x}} \right) + \ln x\left( {{e^x}} \right) \cr & {\text{Multiply}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{{{e^x}}}{x} + {e^x}\ln x \cr & {\text{Solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = y\left( {\frac{{{e^x}}}{x} + {e^x}\ln x} \right) \cr & {\text{Where }}y = {x^{\left( {{e^x}} \right)}} \cr & \frac{{dy}}{{dx}} = {x^{\left( {{e^x}} \right)}}\left( {\frac{{{e^x}}}{x} + {e^x}\ln x} \right) \cr & \frac{{dy}}{{dx}} = {e^x}{x^{{e^x} - 1}} + {e^x}{x^{{e^x}}}\ln x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.