Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 37

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{\left| {2x + 1} \right|\sqrt {{x^2} + x} }}$$

Work Step by Step

$$\eqalign{ & y = {\sec ^{ - 1}}\left( {2x + 1} \right) \cr & {\text{differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}\left( {2x + 1} \right)} \right] \cr & {\text{Using the formula on the page 467}}\,\,\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}u} \right] = \frac{1}{{\left| u \right|\sqrt {{u^2} - 1} }}\frac{{du}}{{dx}} \cr & {\text{Considering }}u = 2x + 1{\text{ we have}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\left| {2x + 1} \right|\sqrt {{{\left( {2x + 1} \right)}^2} - 1} }}\frac{d}{{dx}}\left[ {2x + 1} \right] \cr & {\text{Then}}{\text{,}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\left| {2x + 1} \right|\sqrt {{{\left( {2x + 1} \right)}^2} - 1} }}\left( 2 \right) \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{2}{{\left| {2x + 1} \right|\sqrt {4{x^2} + 4x + 1 - 1} }} \cr & \frac{{dy}}{{dx}} = \frac{2}{{\left| {2x + 1} \right|\sqrt {4{x^2} + 4x} }} \cr & \frac{{dy}}{{dx}} = \frac{2}{{2\left| {2x + 1} \right|\sqrt {{x^2} + x} }} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\left| {2x + 1} \right|\sqrt {{x^2} + x} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.