Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 32

Answer

$$y' = \frac{{ab}}{{{e^x}{{\left( {1 + b{e^{ - x}}} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & y = \frac{a}{{1 + b{e^{ - x}}}} \cr & {\text{write with negative exponents}} \cr & y = a{\left( {1 + b{e^{ - x}}} \right)^{ - 1}} \cr & {\text{find the derivative by the chain rule}} \cr & y' = - a{\left( {1 + b{e^{ - x}}} \right)^{ - 2}}\left( {1 + b{e^{ - x}}} \right)' \cr & y' = - a{\left( {1 + b{e^{ - x}}} \right)^{ - 2}}\left( { - b{e^{ - x}}} \right) \cr & {\text{simplifying}} \cr & y' = ab{e^{ - x}}{\left( {1 + b{e^{ - x}}} \right)^{ - 2}} \cr & {\text{write with positive exponents}} \cr & y' = \frac{{ab}}{{{e^x}{{\left( {1 + b{e^{ - x}}} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.