Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 33

Answer

$$\frac{{dy}}{{dx}} = \frac{2}{{\pi \left( {1 + 4{x^2}} \right)}}$$

Work Step by Step

\lim\limits_{a \to b}$$\eqalign{ & y = \frac{1}{\pi }{\tan ^{ - 1}}2x \cr & {\text{find the derivative}} \cr & y' = \left( {\frac{1}{\pi }{{\tan }^{ - 1}}2x} \right)' \cr & y' = \frac{1}{\pi }\left( {{{\tan }^{ - 1}}2x} \right)' \cr & {\text{differentiate using the formula }} \cr & \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}{\text{ }}\left( {{\text{see page 467}}} \right) \cr & \cr & \frac{{dy}}{{dx}} = \frac{1}{\pi }\left( {\frac{1}{{1 + {{\left( {2x} \right)}^2}}}} \right)\left( {2x} \right)' \cr & \frac{{dy}}{{dx}} = \frac{1}{\pi }\left( {\frac{1}{{1 + 4{x^2}}}} \right)\left( 2 \right) \cr & {\text{simplifying}}{\text{, }} \cr & \frac{{dy}}{{dx}} = \frac{2}{{\pi \left( {1 + 4{x^2}} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.