Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 49

Answer

$$\left( {\frac{1}{3},e} \right)$$

Work Step by Step

$$\eqalign{ & y = {e^{3x}} \cr & {\text{Calculate the derivative}} \cr & \frac{{dy}}{{dx}} = 3{e^{3x}} \cr & m = 3{e^{3x}} \cr & {\text{The derivative passes through the origen, then we have the}} \cr & {\text{point }}\left( {0,0} \right),{\text{ the equation is given by}} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & {e^{3x}} - 0 = 3{e^{3x}}\left( {x - 0} \right) \cr & {\text{Solve for }}x \cr & {e^{3x}} = 3x{e^{3x}} \cr & {e^{3x}} - 3x{e^{3x}} = 0 \cr & \left( {1 - 3x} \right){e^{3x}} = 0 \cr & 1 - 3x = 0,{\text{ or }}{e^{3x}} = 0 \cr & 1 - 3x = 0 \cr & x = \frac{1}{3} \cr & {\text{The point is }}\left( {\frac{1}{3},f\left( {\frac{1}{3}} \right)} \right) \cr & f\left( {\frac{1}{3}} \right) = {e^{3\left( {\frac{1}{3}} \right)}} = e \cr & {\text{The point is }}\left( {\frac{1}{3},e} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.