Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 26

Answer

$$\frac{{dy}}{{dx}} = \frac{2}{{x\ln 10{{\left( {1 - \log x} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & y = \frac{{1 + \log x}}{{1 - \log x}} \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{{1 + \log x}}{{1 - \log x}}} \right] \cr & {\text{By the quotient rule}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {1 - \log x} \right)\left( {\frac{1}{{x\ln 10}}} \right) - \left( {1 + \log x} \right)\left( { - \frac{1}{{x\ln 10}}} \right)}}{{{{\left( {1 - \log x} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{\frac{1}{{x\ln 10}} - \frac{{\log x}}{{x\ln 10}} + \frac{1}{{x\ln 10}} + \frac{{\log x}}{{x\ln 10}}}}{{{{\left( {1 - \log x} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{\frac{2}{{x\ln 10}}}}{{{{\left( {1 - \log x} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{2}{{x\ln 10{{\left( {1 - \log x} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.