Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 23

Answer

$$y' = \frac{1}{{3x{{\left( {\ln x + 1} \right)}^{2/3}}}}$$

Work Step by Step

$$\eqalign{ & y = \root 3 \of {\ln x + 1} \cr & or \cr & y = {\left( {\ln x + 1} \right)^{1/3}} \cr & {\text{find the derivative}} \cr & y' = \left( {{{\left( {\ln x + 1} \right)}^{1/3}}} \right)' \cr & {\text{use chain rule}} \cr & y' = \frac{1}{3}{\left( {\ln x + 1} \right)^{ - 2/3}}\left( {\ln x + 1} \right)' \cr & {\text{use }}\left( {\ln u} \right)' = \frac{{u'}}{u}, \cr & y' = \frac{1}{3}{\left( {\ln x + 1} \right)^{ - 2/3}}\left( {\frac{1}{x}} \right) \cr & {\text{simplifying}} \cr & y' = \frac{1}{{3x}}{\left( {\ln x + 1} \right)^{ - 2/3}} \cr & y' = \frac{1}{{3x{{\left( {\ln x + 1} \right)}^{2/3}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.