Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 36

Answer

$$\frac{{dy}}{{dx}} = \frac{{{{\left( {1 + x} \right)}^{1/x}}}}{x}\left[ {\frac{1}{{1 + x}} - \frac{{\ln \left( {1 + x} \right)}}{x}} \right]$$

Work Step by Step

$$\eqalign{ & y = {\left( {1 + x} \right)^{1/x}} \cr & {\text{Take natural logarithm on both sides}} \cr & \ln y = \ln {\left( {1 + x} \right)^{1/x}} \cr & {\text{Using the logarithmic property }}\ln {u^n} = n\ln u \cr & \ln y = \frac{1}{x}\ln \left( {1 + x} \right) \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {\frac{1}{x}\ln \left( {1 + x} \right)} \right] \cr & {\text{By the product rule}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{1}{x}\frac{d}{{dx}}\left[ {\ln \left( {1 + x} \right)} \right] + \ln \left( {1 + x} \right)\frac{d}{{dx}}\left[ {\frac{1}{x}} \right] \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{1}{x}\left( {\frac{1}{{1 + x}}} \right) + \ln \left( {1 + x} \right)\left( { - \frac{1}{{{x^2}}}} \right) \cr & {\text{Factor}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \left[ {\frac{1}{{1 + x}} - \frac{{\ln \left( {1 + x} \right)}}{x}} \right]\frac{1}{x} \cr & {\text{Solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{y}{x}\left[ {\frac{1}{{1 + x}} - \frac{{\ln \left( {1 + x} \right)}}{x}} \right] \cr & {\text{Where }}y = {\left( {1 + x} \right)^{1/x}} \cr & \frac{{dy}}{{dx}} = \frac{{{{\left( {1 + x} \right)}^{1/x}}}}{x}\left[ {\frac{1}{{1 + x}} - \frac{{\ln \left( {1 + x} \right)}}{x}} \right] \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.