Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 44

Answer

$$y = - 4x + 8$$

Work Step by Step

$$\eqalign{ & {\text{let }}y = \ln \left( {5 - {x^2}} \right) \cr & {\text{Find }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln \left( {5 - {x^2}} \right)} \right] \cr & \frac{{dy}}{{dx}} = \frac{{ - 2x}}{{5 - {x^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{2x}}{{{x^2} - 5}} \cr & {\text{Find the slope evaluating }}\frac{{dy}}{{dx}}{\text{ at }}x = 2 \cr & {\left. {\frac{{dy}}{{dx}}} \right|_{x = 2}} = \frac{{2\left( 2 \right)}}{{{{\left( 2 \right)}^2} - 5}} \cr & m = - 4 \cr & {\text{Evaluate }}y{\text{ at }}x = 2 \cr & y\left( 2 \right) = \ln \left( {5 - {{\left( 2 \right)}^2}} \right) \cr & y\left( 2 \right) = \ln \left( 1 \right) \cr & y\left( 2 \right) = 0 \cr & \cr & {\text{Find the equation of the tangent line to the graph using the }} \cr & {\text{point - slope form }}y - {y_1} = m\left( {x - {x_1}} \right) \cr & {\text{With }}{x_1} = 2,\,\,{y_1} = 0 \cr & y - 0 = - 4\left( {x - 2} \right) \cr & {\text{Simplify}} \cr & y = - 4x + 8 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.