Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 34

Answer

$$y' = \frac{{{2^{{{\sin }^{ - 1}}x}}\left( {\ln 2} \right)}}{{\sqrt {1 - {x^2}} }}$$

Work Step by Step

$$\eqalign{ & y = {2^{{{\sin }^{ - 1}}x}} \cr & {\text{find the derivative}} \cr & y' = \left( {{2^{{{\sin }^{ - 1}}x}}} \right)' \cr & {\text{differentiate using the chain rule}} \cr & \frac{d}{{dx}}\left[ {{a^u}} \right] = {a^u}\left( {\ln a} \right)\frac{{du}}{{dx}} \cr & \cr & y' = {2^{{{\sin }^{ - 1}}x}}\left( {\ln 2} \right)\left( {{{\sin }^{ - 1}}x} \right)' \cr & {\text{differentiate using the formula }} \cr & \frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}}{\text{ }}\left( {{\text{see page 467}}} \right) \cr & y' = {2^{{{\sin }^{ - 1}}x}}\left( {\ln 2} \right)\left( {\frac{1}{{\sqrt {1 - {x^2}} }}} \right) \cr & {\text{simplifying}}{\text{, }} \cr & y' = \frac{{{2^{{{\sin }^{ - 1}}x}}\left( {\ln 2} \right)}}{{\sqrt {1 - {x^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.