Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 27

Answer

$$y' = \frac{3}{{2x}} + \frac{{2{x^3}}}{{1 + {x^4}}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {{x^{3/2}}\sqrt {1 + {x^4}} } \right) \cr & {\text{use product rule for logarithms}} \cr & y = \ln \left( {{x^{3/2}}} \right) + \ln \left( {\sqrt {1 + {x^4}} } \right) \cr & {\text{radical property }}\root n \of {{a^m}} = {a^{m/n}} \cr & y = \ln \left( {{x^{3/2}}} \right) + \ln {\left( {1 + {x^4}} \right)^{1/2}} \cr & {\text{power rule for logarithms }}\ln {a^m} = m\ln a \cr & y = \frac{3}{2}\ln \left( x \right) + \frac{1}{2}\ln \left( {1 + {x^4}} \right) \cr & {\text{find the derivative}} \cr & y' = \frac{3}{2}\left( {\ln \left( x \right)} \right)' + \frac{1}{2}\left( {\ln \left( {1 + {x^4}} \right)} \right)' \cr & {\text{use }}\left( {\ln u} \right)' = \frac{{u'}}{u}, \cr & y' = \frac{3}{2}\left( {\frac{1}{x}} \right) + \frac{1}{2}\left( {\frac{{4{x^3}}}{{1 + {x^4}}}} \right) \cr & y' = \frac{3}{{2x}} + \frac{{2{x^3}}}{{1 + {x^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.