Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 38

Answer

$$\frac{{dy}}{{dx}} = - \frac{x}{{\sqrt {\left( {1 - {x^4}} \right)\left( {{{\cos }^{ - 1}}{x^2}} \right)} }}$$

Work Step by Step

$$\eqalign{ & y = \sqrt {{{\cos }^{ - 1}}{x^2}} \cr & {\text{write the function as}} \cr & y = {\left( {{{\cos }^{ - 1}}{x^2}} \right)^{1/2}} \cr & {\text{differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {{{\cos }^{ - 1}}{x^2}} \right)}^{1/2}}} \right] \cr & {\text{by the chain rule}} \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {{{\cos }^{ - 1}}{x^2}} \right)^{ - 1/2}}\frac{d}{{dx}}\left[ {{{\cos }^{ - 1}}{x^2}} \right] \cr & {\text{Using the formula on the page 467}}\,\,\frac{d}{{dx}}\left[ {{{\cos }^{ - 1}}u} \right] = - \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}} \cr & {\text{Setting }}u = {x^2}{\text{ we have}} \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {{{\cos }^{ - 1}}{x^2}} \right)^{ - 1/2}}\left( { - \frac{1}{{\sqrt {1 - {{\left( {{x^2}} \right)}^2}} }}} \right)\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Then}}{\text{,}} \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {{{\cos }^{ - 1}}{x^2}} \right)^{ - 1/2}}\left( { - \frac{1}{{\sqrt {1 - {{\left( {{x^2}} \right)}^2}} }}} \right)\left( {2x} \right) \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = {\left( {{{\cos }^{ - 1}}{x^2}} \right)^{ - 1/2}}\left( { - \frac{x}{{\sqrt {1 - {x^4}} }}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{x}{{\sqrt {{{\cos }^{ - 1}}{x^2}} \sqrt {1 - {x^4}} }} \cr & \frac{{dy}}{{dx}} = - \frac{x}{{\sqrt {\left( {1 - {x^4}} \right)\left( {{{\cos }^{ - 1}}{x^2}} \right)} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.