Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Cumulative Review - Page 634: 34

Answer

$\text{the interval } [2,\infty)$

Work Step by Step

Expressing the given inequality in factored form results to \begin{array}{l} x^3+2x^2-4x\ge8 \\\\ x^3+2x^2-4x-8\ge0 \\\\ (x^3+2x^2)-(4x+8)\ge0 \\\\ x^2(x+2)-4(x+2)\ge0 \\\\ (x+2)(x^2-4)\ge0 \\\\ (x+2)(x+2)(x-2)\ge0 .\end{array} Hence, the critical points are $x=\{ -2,2 \}$. If $x\lt-2$, then, \begin{array}{l} (x+2)(x+2)(x-2) \\\Rightarrow (-)(-)(-) \\=\text{ negative} .\end{array} If $-2\lt x\lt2$, then, \begin{array}{l} (x+2)(x+2)(x-2) \\\Rightarrow (+)(+)(-) \\=\text{ negative} .\end{array} If $x\gt2$, then, \begin{array}{l} (x+2)(x+2)(x-2) \\\Rightarrow (+)(+)(+) \\=\text{ positive} .\end{array} Since the factored form of the inequality uses $\ge0$, then take the positive result. Hence, the solution set is $ \text{the interval } [2,\infty) $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.