Answer
$\frac{(\sqrt 3-3)}{3}$
Work Step by Step
$\frac{-2}{\sqrt 3+3}\times\frac{\sqrt 3-3}{\sqrt 3-3}$
=$\frac{-2(\sqrt 3-3)}{(\sqrt 3+3)(\sqrt 3-3)}$
=$\frac{-2(\sqrt 3-3)}{(\sqrt 3)^{2}-(3)^{2}}$
=$\frac{-2(\sqrt 3-3)}{3-9}$
=$\frac{-2(\sqrt 3-3)}{-6}$
=$\frac{(\sqrt 3-3)}{3}$