Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Cumulative Review - Page 634: 13c

Answer

$\dfrac{x^2+xy}{y^3+y^2}$

Work Step by Step

The expression $ \dfrac{\dfrac{x}{y^2}+\dfrac{1}{y}}{\dfrac{y}{x^2}+\dfrac{1}{x}} $ simplifies to \begin{array}{l} \left( \dfrac{x}{y^2}+\dfrac{1}{y}\right) \div\left( \dfrac{y}{x^2}+\dfrac{1}{x} \right) \\\\= \dfrac{x+y}{y^2} \div\dfrac{xy+x}{x^2} \\\\= \dfrac{x+y}{y^2} \cdot\dfrac{x^2}{xy+x} \\\\= \dfrac{x+y}{y^2} \cdot\dfrac{x\cdot x}{x(y+1)} \\\\= \dfrac{x+y}{y^2} \cdot\dfrac{x}{y+1} \\\\= \dfrac{x^2+xy}{y^3+y^2} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.