Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Cumulative Review - Page 634: 19

Answer

The solution set is $\left\{-6, -1\right\}$.

Work Step by Step

Factor each denominator completely to obtain: $\dfrac{2x}{x-3}+\dfrac{6-2x}{(x-3)(x+3)}=\dfrac{x}{x+3}$ The LCD is $(x-3)(x+3)$. Multiply this LCD to both sides of the equation to get rid of the denominators: \begin{array}{ccc} \require{cancel} &(x-3)(x+3) \cdot \left[\dfrac{2x}{x-3}+\dfrac{6-2x}{(x-3)(x+3)}\right]&=&\dfrac{x}{x+3}\cdot (x-3)(x+3) &\\&(x-3)(x+3) \cdot \dfrac{2x}{x-3}+(x-3)(x+3)\cdot \dfrac{6-2x}{(x-3)(x+3)}&=&\dfrac{x}{\cancel{x+3}}\cdot (x-3)\cancel{(x+3)} &\\&\cancel{(x-3)}(x+3) \cdot \dfrac{2x}{\cancel{x-3}}+\cancel{(x-3)(x+3)}\cdot \dfrac{6-2x}{\cancel{(x-3)(x+3)}}&=&x(x-3) \\&(x+3)(2x)+6-2x&=&x^2-3x \\&2x^2+6x+6-2x&=&x^2-3x \\&2x^2+4x+6&=&x^2-3x \\&2x^2+4x+6-x^2+3x&=&0 \\&x^2+7x+6&=&0 \end{array} Factor the trinomial: $(x+6)(x+1)=0$ Use the Zero Factor Property by equating each factor to zero, then solve each equation to obtain: \begin{array}{ccc} &x+6=0 &\text{or} &x+1=0 \\&x=-6 &\text{or} &x=-1 \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.